Lateral Stability Control of Electric Vehicle Based On Disturbance Accommodating Kalman Filter using the Integration of Single Antenna GPS Receiver and Yaw Rate Sensor

نویسندگان

  • Binh-Minh Nguyen
  • Yafei Wang
  • Hiroshi Fujimoto
  • Yoichi Hori
چکیده

This paper presents a novel lateral stability control system for electric vehicle based on sideslip angle estimation through Kalman filter using the integration of a single antenna GPS receiver and yaw rate sensor. Using multi-rate measurements including yaw rate and course angle, time-varying parameters disappear from the measurement equation of the proposed Kalman filter. Accurate sideslip angle estimation is achieved by treating the combination of model uncertainties and external disturbances as extended states. Active front steering and direct yaw moment are integrated to manipulate sideslip angle and yaw rate of the vehicle. Instead of decoupling control design method, a new control scheme, “two-input two-output controller”, is proposed. The extended states are utilized for disturbance rejection that improves the robustness of lateral stability control system. The effectiveness of the proposed methods is verified by computer simulations and experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Yaw Angle Control for Autonomous Vehicle Using Kalman Filter Based Disturbance Observer

Yaw angle control is an essential function in every autonomous vehicle system. In this paper, a novel yaw angle control method for vehicle is proposed. Because the attitude of vehicle obtained from on-board GPS receiver is not only delayed but also at low rate in comparison with the control frequency of EPS servo drives, it is impossible to use GPS directly in yaw angle control loop. By integra...

متن کامل

Yaw Rate Control and Actuator Fault Detection and Isolation for a Four Wheel Independent Drive Electric Vehicle

In this paper, a new actuator fault detection and isolation method for a four wheel independent drive electric vehicle is proposed. Also, a controller based on sliding mode control method is proposed for lateral stability of the vehicle. The proposed control method is designed in three high, medium and low levels. At the high-level, the vehicle desired dynamics such as longitudinal speed refere...

متن کامل

Vehicle Sideslip Angle Estimation Using Two Single-antenna Gps Receivers

Knowing vehicle sideslip angle accurately is critical for active safety systems such as Electronic Stability Control (ESC). Vehicle sideslip angle can be measured through optical speed sensors, or dual-antenna GPS. These measurement systems are costly (~$5k to $100k), which prohibits wide adoption of such systems. This paper demonstrates that the vehicle sideslip angle can be estimated in real-...

متن کامل

GPS/INS Integration for Vehicle Navigation based on INS Error Analysis in Kalman Filtering

The Global Positioning System (GPS) and an Inertial Navigation System (INS) are two basic navigation systems. Due to their complementary characters in many aspects, a GPS/INS integrated navigation system has been a hot research topic in the recent decade. The Micro Electrical Mechanical Sensors (MEMS) successfully solved the problems of price, size and weight with the traditional INS. Therefore...

متن کامل

Yaw Rate and Lateral Acceleration Sensor Plausibilisation in an Active Front Steering Vehicle

Accurate measurements from sensors measuring the vehicle’s lateral behavior are vital in todays vehicle dynamic control systems such as the Electronic Stability Program (ESP). This thesis concerns accurate plausibilisation of two of these sensors, namely the yaw rate sensor and the lateral acceleration sensor. The estimation is based on Kalman filtering and culminates in the use of a 2 degree-o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013